Probability Based Corrosion Control

E. Hoffman, P. Zapp

May 13, 2008

Outline

- Current chemistry control program
- Initiative for broader chemistry control
 - Lower nitrite requirement
- Statistical test matrix
- Electrochemical/Visual results
- Benefits

Current Chemistry Controls

Broader Chemistry Control Initiative

- Chemistry control program intended to prevent pitting for [NO₃-] < 1 M
- Requirements
 - $[OH^{-}]_{min} = 1 M$
 - $-[NO_2]$ minimum with pH > 10.3
- Option 1: Lower hydroxide requirements
- Option 2: Lower nitrite requirements
 - Probabilistic basis for pitting control with nitrite

Development of Statistical Basis

- Investigate various solution chemistries to determine the minimum molar nitrite concentration to eliminate conservatism in the current limit, while confidently inhibit pitting
- Design space of 0.02 M \leq [NO₃-] \leq 1 M
 - Limit to 40 °C
- Logistic regression

Complete Test Matrix

- 105 test points along set R-values
- Multiple tests at each design point
- Electrochemical and coupon testing
- Addition of chlorides/sulfates per maximum current requirements
- pH controlled with buffered solution

Cyclic Polarization Scan

- Repassivation/Protection Potential
 - Cessation of pitting

- Corrosion /Open Circuit Potential
- Transpassive Potential
- Pitting Potential
 - Breakdown potential near the open circuit potential

Electrochemical Scan Result

Results

- Cyclic potentiodynamic polarization scans
 - Corrosion potential
 - Pitting potential premature breakdown or transpassive
 - Repassivation potential if present
- Visual observation of electrochemical coupons
 - Categorized as None/Moderate/Significant
 - Monitored electrochemical potentials where corrosion occurred

Corrosion Evolution during Electrochemical Run

Summary of Visual Results

0.4

0.6

Nitrate (M)

0.2

8.0

Lowest Level of Nitrite Inhibitor Addition

Results suggest that absolute value of inhibitor is sufficient, rather than R-value.

Scans Performed with 1 M NaNO₃

Potential limit exists beyond which nitrite addition as a corrosion inhibitor does not add value.

Conclusion/Path Forward

- Critical nitrite concentration exists to sufficiently inhibit against localized corrosion mechanisms due to nitrates, chlorides, and sulfates.
 - Based upon electrochemical cyclic polarization
 - Based upon visual observations
- Coupon testing is currently underway.
- Completed electrochemical samples are being statistically analyzed.
 - Electrochemical curve
 - Optical/visual results

Benefits

- Reduces unnecessary conservatism in support of tank closure goals.
- Quantifies risk of pitting associated with particular chemistries.
- Maximum savings of tank space and cost of maintaining unnecessarily conservative chemistry control measures.
- Allows for tank specific risk acceptance.

Acknowledgements

- T. Murphy
- B. Wiersma
- F. Heckendorn
- M. Collins
- T. Edwards

